Showing:

Annotations
Attributes
Diagrams
Source
Used by
Complex Type TransformMatrixType
Annotations
The TransformMatrixType defines a three dimensional transformation that may include rotation and translation, but not scaling. The vectors of the Rotation are unit vectors.
For any point, if:
1. The coordinates of the point in the "before" coordinate system
   are x, y, and z.
2. The coordinates of the point in the "after" coordinate system
   are X, Y, and Z.
3. The components of the XDirection are Xi, Xj, and Xk.
4. The components of the YDirection are Yi, Yj, and Yk.
5. The components of the ZDirection are Zi, Zj, and Zk.
6. The Cartesian coordinates of the Origin are Ox, Oy, and Oz.
Then the following transformation equations hold.
  X = (Xi)x + (Yi)y + (Zi)z + Ox
  Y = (Xj)x + (Yj)y + (Zj)z + Oy
  Z = (Xk)x + (Yk)y + (Zk)z + Oz
Diagram
Diagram Primitives_xsd_Complex_Type_CoordinateSystemCoreType.tmp#CoordinateSystemCoreType_Rotation Primitives_xsd_Complex_Type_CoordinateSystemCoreType.tmp#CoordinateSystemCoreType_Origin Primitives_xsd_Complex_Type_CoordinateSystemCoreType.tmp#CoordinateSystemCoreType Primitives_xsd_Attribute_Group_AttrPoint.tmp#AttrPoint
Type extension of CoordinateSystemCoreType
Type hierarchy
Used by
Children Origin, Rotation
Attributes
QName Type Use
decimalPlaces xs:nonNegativeInteger optional
linearUnit xs:token optional
significantFigures xs:nonNegativeInteger optional
validity ValidityEnumType optional
xDecimalPlaces xs:nonNegativeInteger optional
xSignificantFigures xs:nonNegativeInteger optional
xValidity ValidityEnumType optional
yDecimalPlaces xs:nonNegativeInteger optional
ySignificantFigures xs:nonNegativeInteger optional
yValidity ValidityEnumType optional
zDecimalPlaces xs:nonNegativeInteger optional
zSignificantFigures xs:nonNegativeInteger optional
zValidity ValidityEnumType optional
Source
<xs:complexType name="TransformMatrixType">
  <xs:annotation>
    <xs:documentation>The TransformMatrixType defines a three dimensional transformation that may include rotation and translation, but not scaling. The vectors of the Rotation are unit vectors.</xs:documentation>
    <xs:documentation>For any point, if: 1. The coordinates of the point in the "before" coordinate system are x, y, and z. 2. The coordinates of the point in the "after" coordinate system are X, Y, and Z. 3. The components of the XDirection are Xi, Xj, and Xk. 4. The components of the YDirection are Yi, Yj, and Yk. 5. The components of the ZDirection are Zi, Zj, and Zk. 6. The Cartesian coordinates of the Origin are Ox, Oy, and Oz. Then the following transformation equations hold. X = (Xi)x + (Yi)y + (Zi)z + Ox Y = (Xj)x + (Yj)y + (Zj)z + Oy Z = (Xk)x + (Yk)y + (Zk)z + Oz</xs:documentation>
  </xs:annotation>
  <xs:complexContent>
    <xs:extension base="CoordinateSystemCoreType">
      <xs:attributeGroup ref="AttrPoint">
        <xs:annotation>
          <xs:documentation>The optional AttrPoint attribute gives attributes of the point that is the Origin. This may include a linearUnit, an accuracy, etc.</xs:documentation>
        </xs:annotation>
      </xs:attributeGroup>
    </xs:extension>
  </xs:complexContent>
</xs:complexType>
Schema location file:////Q:/kramer/qif3.0/model/QIFforHTMLxsd/QIFLibrary/Primitives.xsd